Journal of Organometallic Chemistry, 277 (1984) 199-201 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CONTRIBUTIONS TO GROUP IV ORGANOMETALLIC CHEMISTRY

VII *. THE EFFECT OF ELECTRONEGATIVITY ON SUBSTITUENT SHIFTS IN SILICON-29 NMR

R. HARRY CRAGG and ROB D. LANE

The Chemical Laboratory, University of Kent at Canterbury, Canterbury, Kent (Great Britain) (Received June 28th, 1984)

Summary

Silicon-29 NMR shifts for silanes of the type $Me_{2-n}Ph_nSiX_2$ (X = H, Me, Ph, F, Cl, NR₂ and OR) indicate that the shifts on replacement of a methyl by a phenyl group are largely determined by the electronegativity and donor ability of X.

A study of the silicon-29 NMR shift values for the series $Me_{4.n}SiPh_n$ indicated a fairly constant shift of about -4 ppm on replacement of a Me by a Ph group [2,3,4] although it was subsequently suggested that in general substituent parameters can only be used with caution [5,6,7].

In the course of our detailed investigation of 1,3-dioxa- and 1,3-diaza-2-silacycloalkanes and their precursors [8,9] we have obtained silicon-29 NMR shifts for a range of dialkoxy- and bis(dialkylamino)-silanes. The results show that the methyl \rightarrow phenyl substituent shift is relatively constant for the same class of compound and a comparison with literature shift values for other compounds of the type Me_{2-n}Ph_nSiX₂ suggests that the magnitude of the effect is dependent on the electronegativity of X.

Results and discussion

Silicon-29 NMR shifts and methyl \rightarrow phenyl substituent shifts ($\Delta\delta$) are given in Table 1, literature values being a mean of shifts taken from a review by Marsmann [6].

The general dependence of $\Delta\delta$ on the Pauling electronegativity of atoms X directly bonded to silicon is shown in Fig. 1, with OMe and NMe₂ representative of alkoxy and dialkylamino groups. The points appear to produce two sets of lines, of marginally different gradient for the first and second substituents, with the electro-

199

^{*} For part VI see Ref. 1.

TABLE 1

x	n			Δδ	
	0	1	2	$Me_2 \rightarrow PhMe$	$MePh \rightarrow Ph_2$
H "	- 39.60	- 36.80	- 33.79	+ 2.8	+ 3.01
Me "	0	- 4.78	- 8.62	4.78	- 3.84
Ph "	- 8.62	-12.05	- 13.98	- 3.43	- 1.93
Cl a	+ 31.93	+17.90	+ 6.25	-14.03	-11.65
NMe ₂	-1.07	9.06	-17.04	- 7.99	- 7.98
NEt ₂	- 5.52	-11 32	_	- 5.80	-
OMe	-2.28 ^a	- 14.89	- 29.11	12.61	-14.22
OEt	- 6.25 <i>"</i>	-18.43	- 32.36	-12.18	- 13.93
OPr'	- 8.29	- 21.96	- 35.78	-13.67	-13.82
OPh	-6.10(2)	- 21.19	- 37.37	- 15.09	- 16.18
F	+ 4.45	- 12.40	- 29.8	- 16.85	-17.4

SILICON-29 NMR SHIFTS AND PHENYL SUBSTITUENT SHIFTS FOR SILANES OF THE TYPE $Me_{2-n}Ph_nSiX_2$ (ppm)

" Ref. 5, mean values.

negative atoms N, O and F common to one set. Since these are the atoms which might be expected to back donate most strongly it is noteworthy that the $\Delta\delta$ values are less than would be obtained by extrapolation of the lines containing H. C and Cl.

One interpretation of these results is that the increased shielding at silicon which results from phenyl substitution is due to $(p \rightarrow d)\pi$ bonding from the phenyl group and that this would be enhanced by the presence of electronegative substituents X (Ph \neg Si \rightarrow X). If however X were itself capable of $(p \rightarrow d)$ back donation this would partially offset the π -bonding between phenyl and silicon which would tend to

Fig. 1. $\Delta(Me \rightarrow Ph) \,\delta(^{29}Si)$ for compounds containing the $X_2Si \subset Mee_1 \rightarrow MePh, \Delta MePh \rightarrow Ph_2$. * Electronegativity of atom in X bonded directly to silicon (after Pauling [11]).

reduce the increase in shielding ($Ph \stackrel{-}{\rightarrow} Si \stackrel{-}{\rightarrow} X$). Also compatible with this explanation are the somewhat higher $\Delta\delta$ values when X is a phenoxy, rather than an alkoxy, group since some delocalisation of oxygen electrons into the oxygen-phenyl bond and away from silicon would be expected ($Ph \stackrel{-}{\rightarrow} Si \rightarrow O\stackrel{-}{\rightarrow} Ph$).

Substituent effects do not appear to have been connected with electronegativity in precisely this way before, although the linear relationship between absolute shift values and the electronegativity of X in compounds of the type Me₃SiX has been established [2]. The ligands N, O and F were found to be exceptional, and were observed to produce less deshielding of the silicon atom than might be expected, and the effect was attributed to $(p \rightarrow d)\pi$ bonding. It is of interest to note that, as reported by Wells [10], the π bonded phenyl groups and vinyl groups are found in the same category as N, O and F.

We associate the lower $\Delta\delta$ value, for Me₂Si(NEt₂)₂ (-5.80 ppm) as compared to Me₂Si(NMe₂)₂ - 7.99 ppm) with steric crowding in MePhSi(NEt₂)₂, this view being supported by the fact that we were unable to prepare Ph₂Si(NEt₂)₂ from the interaction of dichlorodiphenylsilane and diethylamine.

Experimental

Dialkoxy- and bis(dialkylamino)-silanes were prepared from the appropriate dichlorosilanes by established methods.

Silicon-29 NMR spectra were recorded on a JEOL-PS-100 NMR spectrometer in the Fourier transform mode using solutions of the sample in either $CDCl_3$ or CCl_4 with internal TMS as the standard. A trace of chromium acetylacetonate was used as a relaxation agent for some of the spectra.

References

- 1 R.H. Cragg and R.D. Lane, J. Organomet. Chem., 270 (1984) 25.
- 2 B.K. Hunter and L.W. Reeves, Canad. J. Chem., 46 (1968) 1399
- 3 G. Engelhardt, R. Radeglia, H. Jancke, E. Lippmaa, and M. Magi, Org. Mag. Res., 5 (1973) 561.
- 4 R.L. Scholl, G.E. Maciel and W.K. Musker, J. Am. Chem. Soc., 94 (1972) 6376.
- 5 J. Schraml and J.M. Bellama, F.C. Nachod, J.J. Zuckerman and E.W. Randall (Eds.) Determination of Organic Structures by Physical Methods, vol. 6, p. 203, Academic Press, New York, 1976.
- 6 H. Marsmann, (P. Diehl, E. Fluck and R. Kosfeld, (Eds.), NMR Basic Principles and Progress, vol. 17, p. 65, Springer-Verlag, New York, 1981.
- 7 E. Lippmaa, M. Magi, G. Engelhardt, H. Jancke, V. Chvalovsky and J. Schraml, Coll. Czech. Chem. Comm., 39 (1974) 1041.
- 8 R.H. Cragg and R.D. Lane, J. Organomet. Chem., 267 (1984) 1.
- 9 R.H. Cragg and R.D. Lane, J. Organomet. Chem., 212 (1981) 310.
- 10 P.R. Wells, F.C. Nachod and J.J. Zuckerman (Eds.), Determination of Organic Structures by Physical Methods, vol. 4, p. 233, Academic Press, New York, 1971.
- 11 L. Pauling, The Nature of the Chemical Bond, Cornell University Press, 1960.